Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals
نویسندگان
چکیده
BACKGROUND Economically viable biobased production of bulk chemicals and biofuels typically requires high product titers. During microbial bioconversion this often leads to product toxicity, and tolerance is therefore a critical element in the engineering of production strains. RESULTS Here, a systems biology approach was employed to understand the chemical stress response of Escherichia coli, including a genome-wide screen for mutants with increased fitness during chemical stress. Twelve chemicals with significant production potential were selected, consisting of organic solvent-like chemicals (butanol, hydroxy-γ-butyrolactone, 1,4-butanediol, furfural), organic acids (acetate, itaconic acid, levulinic acid, succinic acid), amino acids (serine, threonine) and membrane-intercalating chemicals (decanoic acid, geraniol). The transcriptional response towards these chemicals revealed large overlaps of transcription changes within and between chemical groups, with functions such as energy metabolism, stress response, membrane modification, transporters and iron metabolism being affected. Regulon enrichment analysis identified key regulators likely mediating the transcriptional response, including CRP, RpoS, OmpR, ArcA, Fur and GadX. These regulators, the genes within their regulons and the above mentioned cellular functions therefore constitute potential targets for increasing E. coli chemical tolerance. Fitness determination of genome-wide transposon mutants (Tn-seq) subjected to the same chemical stress identified 294 enriched and 336 depleted mutants and experimental validation revealed up to 60 % increase in mutant growth rates. Mutants enriched in several conditions contained, among others, insertions in genes of the Mar-Sox-Rob regulon as well as transcription and translation related gene functions. CONCLUSIONS The combination of the transcriptional response and mutant screening provides general targets that can increase tolerance towards not only single, but multiple chemicals.
منابع مشابه
Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors.
Cross-tolerance and antagonistic pleiotropy have been observed between different complex phenotypes in microbial systems. These relationships between adaptive landscapes are important for the design of industrially relevant strains, which are generally subjected to multiple stressors. In our previous work, we evolved Escherichia coli for enhanced tolerance to the biofuel n-butanol and discovere...
متن کاملGenome-Wide Mapping of Furfural Tolerance Genes in Escherichia coli
Advances in genomics have improved the ability to map complex genotype-to-phenotype relationships, like those required for engineering chemical tolerance. Here, we have applied the multiSCale Analysis of Library Enrichments (SCALEs; Lynch et al. (2007) Nat. Method.) approach to map, in parallel, the effect of increased dosage for >10(5) different fragments of the Escherichia coli genome onto fu...
متن کاملToward a Semisynthetic Stress Response System To Engineer Microbial Solvent Tolerance
UNLABELLED Strain tolerance to toxic metabolites is an important trait for many biotechnological applications, such as the production of solvents as biofuels or commodity chemicals. Engineering a complex cellular phenotype, such as solvent tolerance, requires the coordinated and tuned expression of several genes. Using combinations of heat shock proteins (HSPs), we engineered a semisynthetic st...
متن کاملSignificantly improved solvent tolerance of Escherichia coli by global transcription machinery engineering
BACKGROUND Escherichia coli has emerged as a promising platform microorganism to produce biofuels and fine chemicals of industrial interests. Certain obstacles however remain to be overcome, among which organic-solvent tolerance is a crucial one. RESULTS We used global transcription machinery engineering (gTME) to improve the organic-solvent tolerance (OST) of E. coli JM109. A mutant library ...
متن کاملImproving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering
UNLABELLED Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2016